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Abstract — The dynamics of a self-propelled Brownian sphere confined between two planar hard
walls is investigated by computer simulations and analytic solutions of the corresponding Fokker-

Planck equation.

It is shown that an accumulation of self-propelled particles, often linked to

the hydrodynamic dipole interaction, can be already obtained from the combination of Brownian
motion and self-propulsion. The surface excess is calculated as a function of particle velocity, wall
separation, and translational and rotational diffusion coefficients. In limits of narrow channels or
small propulsion velocities, analytical solutions and numerical results are in excellent agreement.

Introduction. — Many uni- and multi-cellular organ-
isms employ self-propulsion to find food, to transport a
cargo, or to evade unfavorable environmental conditions.
Well-known examples are bacteria [1], sperm, and algae
[2]. The study of the processes and strategies employed
by such biological microswimmers to move through a vis-
cous fluid is not only important to understand biological
systems and affect their behavior, but also to understand
the behavior of active systems in general [3,4] and to con-
struct efficient biomimetic microswimmers [5]. Further-
more, much progress has been made recently to design
artificial nano- and microswimmers, which use propulsion
principles not known from biological systems [3,6].

Microswimmers hardly ever swim alone in an un-
bounded fluid — they rather interact with other swimmers,
and with walls and obstacles. In these interactions, three
main contributions can be distinguished: (i) volume exclu-
sion, which makes the swimmers avoid each other at short
distances, (ii) hydrodynamic interactions, which lead to
alignment and attraction or repulsion depending on the
type of propulsion mechanism (pusher, puller, or neutral
swimmer), and (iii) thermal or intrinsic noise, which im-
plies rotational diffusion of the swimming direction. The
relative importance of propulsion and noise can be char-
acterized by the Peclet number Pey = wvo/(D,Rg) ~
vonR%/(kpT), where vy is the swimming velocity, D, the
rotational diffusion constant, n the fluid viscosity, Ry a
characteristic swimmer size and kgT the thermal energy.
For fast swimmers like sperm, Peclet numbers are of the

order 10* — 10° (neglecting the effect of biological noise
on rotational diffusion), while for slow swimmers, Peclet
numbers are in the range Peg ~ 5—200 for diffusiophoretic
Janus spheres with radii between 0.25 — 5um, respectively
[7,8], and Peg = 120 for E. coli [9]. It has been shown for
Chlamydomonas reinhardtii that the noise inherent to the
biological machines is very important: it reduces the ef-
fective Peclet number for these algae from Pe = O(10%) to
Pe =50 [9]. Tt is important to note that for Pe = O(10?),
rotational diffusion is strong enough to significantly af-
fect the trajectories of interacting microswimmers [9, 10].
For dipole swimmers, the strength of the hydrodynamic
far-field interactions is proportional to the swimming ve-
locity, and therefore directly related to the Peclet number;
furthermore, for neutral swimmers, the hydrodynamic in-
teraction is very weak [3,4].

Sperm [11] and E. coli [12] have been found to strongly
adhere to the walls of an observation chamber. Different
mechanisms have been proposed to explain and predict
this behavior. For high-Pe swimmers, hydrodynamic in-
teractions play an essential role. In particular, force-dipole
and source-dipole contributions have been studied in detail
[13,14]. For low-Pe swimmers, other mechanisms of sur-
face accumulation may dominate, such as the alignment of
rod-like swimmers parallel to a wall [15,16], or crowding
[17]. Indeed, experimental evidence suggests that in wall
accumulation of E. coli, hydrodynamic interactions play
a minor role [9]. In fact, for a microswimmer close to a
wall, it is most likely the combination of excluded volume
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Fig. 1: (Left) A self-propelled Brownian sphere of radius R
is confined between two solid walls at z = £(d + R). The
orientation of the propulsion direction relative to the z axis,
is denoted by 6. (Right) Probability density p(Az) to find a
particle at a distance Az from the wall. At zero Peclet number
Pe = wvo/v/D,D, the probability density is uniform beyond
the short range of the repulsive wall. With increasing Peclet
number particles accumulate near the wall. Results are shown
for a system with wall separation d/\ = 15.6. The curves
correspond to a surface excess of s = 0, 0.05, 0.24, and 0.38
with increasing Peclet number, respectively.

and full hydrodynamic (beyond the dipole approximation)
interactions which is responsible for wall adhesion [18].

Another interesting class of self-propelled particles are
cells and microorganisms — such as keratocytes [19] or
Myxococus xanthus [20] — which move on a surface by
crawling or sliding, or cancer cell moving in a three-
dimensional gel matrix [21]. In this kind of motion, hydro-
dynamics should be irrelevant. Such self-propelled parti-
cles can also hit obstacles or walls on their way and may,
or may not, adhere to them.

In the studies of self-propelled rods near surfaces, it was
assumed that the elongated shape of the rod is essential
for the accumulation [15,16]. We want to consider here an
even simpler system of a self-propelled Brownian sphere.
Surprisingly, we find that a self-propelled sphere shows
even stronger accumulation at a wall than a self-propelled
rod. Furthermore, the simplicity of a spherical particle al-
lows for an analytical solution of the Fokker-Planck equa-
tion in limits of small wall separations or small Peclet num-
bers. The analytic results agree well with the simulation
results in the appropriate limits, and help to understand
the origin of surface accumulation of microswimmers in
the absence of hydrodynamic interactions.

Model and Simulation Technique. — The method
of Multi-Particle Collision dynamics (MPC) is well estab-
lished for studying microswimmers [22] and self-propelled
particles [15]. An advantage of MPC is a natural inclusion
of thermal fluctuations. Furthermore the hydrodynamic
interactions can be turned on and off, without effect on
thermal properties. We employ here a variant of MPC
without hydrodynamic interactions, called random MPC
or Brownian MPC, which is equivalent to Brownian Dy-

namics simulations [23]. The fluid is modeled only by its
effect on suspended particles, which are constructed from
a collection of point-like monomers. After a propagation
time h, in which monomers move according to Newton’s
equation of motion, the monomer particles collide with
fluid particles. In random MPC, random thermal veloci-
ties are assigned to the fluid particles in each collision step.
Thus, each monomer interacts with ps = 10 fluid particles
of mass m and thermal velocities v = 0.54/kpT/m N(0, 1)
(with N(0,1) a vector whose components are standard
normal distributed). The collision step then consists of
a random rotation of the relative velocity, as in standard
MPC [24,25]. This allows us to study the effects of noise
and self-propulsion, without the interference of hydrody-
namics.

The sphere of radius [y is represented by N = 12 point
particles of monomer mass M = 5m in a icosahedral ar-
rangement. These monomers are connected to their neigh-
bors by strong harmonic potentials U, = 0.5K;(|Ar|—1,)?
with spring constant K = 2 - 10%k5T/I? and bond length
I, = 1.05146ly, plus an additional particle at the center,
bonded to all other particles by a similar potential with
spring constants K. = K;/10 and bond length I, = lj.
This central particle is repelled from the wall by a shifted
and truncated Lennard Jones potential, with ¢ = kT and
cutoff 0.250yp. A constant driving force F; = F(ry —ra) is
added to all particles of the colloid where ry /5 are the posi-
tions of two designated monomers on opposite sides of the
colloid, which define the sphere orientation. For a swim-
mer in a hydrodynamic solvent, the location of the fluid
reaction force is very important, as it greatly influences
the swimmer interactions [14]. However, in Brownian dy-
namics there is no reaction force on the fluid, and therefore
also no hydrodynamic interaction with the walls.

From simulations of freely diffusing spheres we extract
the diffusion coefficient D = 6.6 - 10~*lg\/kgT/m and ro-
tational diffusion coefficient D, = 2.1-1073\/kgT/m/lo.
The corresponding hydrodynamic radius of the colloid is
thus R = 41/0.75D/D, = 0.49lp. The actual radius of the
sphere has however no influence on the dynamics of the
sphere, besides this ratio. Indeed it turns out in the an-
alytic calculations below that the natural length scale in
the problem is the ratio of translational and rotational dif-
fusion coefficients. We thus define a characteristic length

scale

A=+D/D, (1)
In our simulation model, A =~ 0.566/5. Without hydrody-
namics, the velocity is directly proportional to the driving
force F', with a mobility D/kgT, i.e. vo(F) = D F/kpT.
In combination with the length scale A\, we define the
Peclet number

’U())\ Vo

Pe=—= . 2

e= 7 DD (2)

Simulation Results. — Self-propulsion leads to ac-
cumulation of particles near the wall. The simulation re-

sults shown in fig. 1 demonstrate that the (normalized)
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Fig. 2: Probability density increment (p(z)—ps) to find a parti-
cle at a distance Az from the wall. Simulation data are shown
for a system with wall separation d/A = 15.6. For small Peclet
number Pe < 2, the probability density is exponential, and
well reproduced by an analytic expression (15) (dashed lines).
At higher Peclet numbers, the probability density increment
is well described by a power law with an exponent of approxi-
mately 1.6 (dotted line).

probability density p(Az) to find a particle at a distance
Az from the wall is strongly peaked close to the wall for
Pe 2 5. Contrary to our expectation, the effect is even
stronger than for rods, and does not saturate with increas-
ing Peclet number.

A natural expectation for the spatial dependence of
p(Az) is an exponential decay. This is indeed seen in the
simulation results for small Peclet numbers (see fig. 2).
However, for larger Peclet numbers with Pe > 7, the de-
cay of probability density away from the wall seems to
be better described by a power law. On the other hand,
the analytic calculations presented below suggest a multi-
exponential form of the distribution. Because of the short
range over which the probability density decays, it is not
possible to distinguish between the two hypotheses on the
basis of our simulations.

To quantify the dependence of the wall accumulation
on Peclet number and wall separation, we introduce the
surface excess s, which is defined as

ad ad
s=1- [ @az/ [ m@a: @

—ad —ad

where po(z) is the probability density for the unpropelled
sphere. Here, « = 1/2 is chosen such as to restrict the
integral over the bulk region of the density profile. For
hard walls, eq. (3) is equivalent to s = fild(p — pp) dz with
bulk density pp. The main advantage of eq. (3) is a simpler
numerical implementation and lower sensitivity to noise. s
vanishes for a homogeneous distribution, is negative when
the particle is repelled from the wall, and approaches unity
for complete adhesion.

Figure 3 shows the surface excess as a function of the
Peclet number for different channel widths. Note that s

100

1000

Fig. 3: Surface excess s as a function of Peclet number Pe,
for various wall separations d as indicated. Results from the
analytic calculation for very thin channels (dotted lines) match
well the simulations for very thin channels, but fail for wider
channels. The approximation for small Peclet numbers (dashed
lines) works well for large wall separations and small Peclet
number. It overestimates the surface excess for large Pe. All
analytic expression have no adjustable parameters.

does not saturate to a value $,,4; < 1 as was observed for
self-propelled rods [15], but approaches unity for large Pe
(complete adhesion).

The dependence of s on channel width d, shown in fig. 4,
comes somewhat at a surprise. Initially the the surface ex-
cess increases rapidly with d, up to a maximum at d/\ ~ 2,
and then slowly decreases again. However, these behaviors
can be well understood from solutions of certain limits of
the Fokker Planck equation, as explained in detail below.

Fokker-Planck description. — To understand the
underlying principles of why self-propelled spheres adhere
to boundaries, it is useful to study the corresponding con-
tinuum theory. We describe the system in terms of the
probability density p(r,n,t) to find the sphere at position
r with orientation n at time ¢,

Op(r,n,t) = [D,V2 —von-V, + DVZ] p(r,n,t) (4)
Symmetry allows us to greatly simplify phase space to
effectively two dimensions, the distance z from the central
plane, and the orientation angle 0 (see fig. 1). The Fokker-
Planck equation then reads

Op(z,0,1) 0y [sin(0)0pp(z, 0,1)]

1
ZDT§ER§5 (5)

— wocos(0)0.p(z,0,t) + DI p(z,0,1)

where 6§ = 0 corresponds to particles oriented in the posi-
tive z-direction.

The principle origin of surface accumulation for self-
propelled spheres can be identified from eq. (5). In the
case of a self-propelled sphere, the rotational diffusion is
independent of position and orientation, so that the av-
erage orientation is isotropic. Thus all particles with a
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Fig. 4: Surface excess s as a function of wall separation d, for
three different Peclet numbers, as indicated. s first increases
sharply with increasing wall separation, but then slowly van-
ishes as the channel gets wider. The approximation for small
Peclet numbers (dashed lines) fails to quantitatively predict
the surface excess (because Pe > 2), but captures the correct
trends for wider channels. The thin-channel approximation
(dotted lines) shows the increase of s with increasing channel
width. All analytic expression have no adjustable parameters.

positive orientation will move quickly to the top wall, and
all particles with negative orientation to the bottom wall.
The bulk is thus depleted of particles, and particles at the
boundaries are homogeneously distributed over all angles
facing towards the wall. Therefore, the driving force does
not order the particle orientations, it just sorts them in dif-
ferent regions like a gravitational force o vg cos(d). Noise
than acts in the form of translational diffusion, yielding an
exponential distribution as for settling colloidal spheres.

Thin films. It is useful to define two Peclet num-
bers Pe, = vo/D,d and Pey = vod/D (note that Pey =
Ped/)). In steady state, and after rescaling lengths by
the effective channel width d (the width of the channel
that the center of mass of the sphere can explore), eq. (5)
reads

cos(0)0,p = Pe; ' sin(0)dy sin(0)0pp + Pe; ' 02p (6)

To solve the eq. (6), we begin with a “thin-channel”
approximation. Because for a no-slip sphere D, =
kpT/(8mnR3), D = kgT/(67nR), and

Pe, D 4/(R\?
Peq d?D, 3\d)’

(7)

rotational diffusion is “slow” in the limit of thin channels
with R/d < 1, and Pe; ! can be assumed to be negligible.
(Note that d can indeed be smaller than R, because 2d
is the width of the channel that the center of the sphere
can explore (see fig. 1); the true channel width is 2d +
2R.) Even though this limit is only strictly valid for very
thin channels, it gives a good indication about the origin
of the surface accumulation, especially for higher Peclet
numbers.

The boundary conditions are zero flux J at both walls
at +d and overall isotropy,

0=J(£1) = p(£1,0)cos(d) — Pe; 0.p(£1,0)
1
JIRCE (8)
—1
The limit Pe, — oo greatly simplifies eq. (6). After

z—integration, eq. (6) becomes Pegcos(f)p = d.p. A sec-
ond z—integration and application of the boundary con-
ditions then yields

Pegpg cos(0)

ePed cos(0)z
7 sinh(Peg cos(0))

p(z,0) = 9)
The surface excess s is evaluated numerically using eq. (3),
and is shown for different channel widths in fig. 3. It agrees
well with the simulation results for thin channels, but ob-
viously fails for wider channels. Note that the surface
excess is symmetric in Peg. In a more detailed compar-
ison (see fig. 5) we see that the agreement is even quan-
titative for the full probability density as a function of
position and orientation for a very thin channel. At high
Pegy, particles completely sort to the wall they are point-
ing to. With a sharp exponential decay (decay length
o 1/(Pegcos(d))), the probability density drops to zero
towards the center-line. Only particles oriented almost
parallel to the surface can be found in the center. Indeed,
eq. (9) predicts a uniform distribution of particles oriented
exactly parallel to the surface. As the Peclet number de-
creases, the decay length increases and eventually exceeds
the system size. Thus for smaller Peclet numbers, parti-
cles of all orientations can be found everywhere, with just
a slight increase for particles pointing towards the surface,
and a small decrease for particles pointing away. However
even for Pey ~ 1 particles in the center are not uniformly
distributed. The boundary condition of the next section
(see eq. (13)) thus does not apply in this case. For wider
channels, the approximation fails as rotational diffusion
becomes more important.

Small Peclet numbers.  The onset of accumulation of
particles at a wall for small Peclet numbers and the effect
of wider channels can best be understood by a different
approach. We consider now a semi-infinite system with

a wall at z = 0, and an isotropic bulk at infinity. We
decompose the density in spherical harmonics,
p(2,0,8) = 3 iz, YL (6) (10)
1=0

where Y,°(0) = Pi(cos(0)) are the spherical harmonics in
“Schmidt normalization”, and P, are the Legendre poly-
nomials. Projecting on orthogonal modes and using prop-
erties of the Legendre polynomials, we rewrite eq. (5) as

(11)

'UOazﬁl-‘rl (Z? t)

= D&pu(z,t) = Dol(l+ 1)fu(z,t)
l [+1

51 1UOazpl—1(Zat) 13

atﬁl <Z7 t)
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Fig. 5: Simulation (left) and theory (right) results for the rela-
tive probability density (p/po) to find a particle in a thin chan-
nel of width d = 0.44)\. For very thin channels, the agreement
between simulation and analytic result (9) is excellent without
any adjustable parameters.
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Fig. 6: Relative probability density (p/po) to find a particle at
a distance z from the wall, for wider channels with d = 15.6).
In the analytic expression (15), only the “bulk density” po is
adjustable, which is determined by averaging the histogram
far from the walls. Excellent agreement is obtained for small
Peclet numbers, but already at Pe 2 1 quantitative differences
become visible. In particular, at Pe = 2.92 second order the-
ory predicts an accumulation even for particles pointing away
from the surface, while simulations show a depletion of such
particles.

As for the simulations, we employ the length scale A =
/D/D, and the mixed Peclet number Pe = vy//DD,.
In steady state, and after a change to coordinates 2’ =
z/A, we obtain

l I+1

2 2\ ~ ~ ~
,—k =Pe|——0,p-1+ =0 12
(02 — ki) pu e 21_13 pz1+2l+33 prer| (12)
with k; = y/I(l + 1). For the boundary conditions, we now
choose an isotropic system at z — oo and a zero flux wall

at z =0,

pi(c0) = 6(1,0) (13)
0=J(0) = p(0,8)vgcos(d) — DA,p(0,0)
so that
N [ I+1 .
0=0.p — Pe {2l_1P11+ 2l+3m+1] (14)

We solve these equations in orders of Peclet number, and
finally arrive at
p(z,0)

Pe 0
i 1-— 7 exp(—V2z/\)Y (6)
+ PTe [\/gexp(—\/@z/)\) - eXP(_\/iz/)‘)} 2(0)

+ %62 exp(—Vv/2z/)) + O(Pe?)

For the relative surface excess, this implies

= /00 |:P66Q exp(—v2z/\) + O(Pe?)| dz
0

2
_ AP + O(Pe?)

6v2
In the limit of decay lengths much larger than the channel
width, this relative surface excess relates to the surface
excess via s = s,./(s, +d). (Note that the Pe? term in the
surface excess vanishes due to symmetry, and thus eq. (16)
is O(Pe*).) We thus see that also for wide channels, self-
propulsion leads to accumulation at the surface. To first
order in Pe, only the average orientation of the particle at
the surface changes, such that the probability of orienta-
tion towards the wall increases by the same amount as the
probability of orientation away from the wall decreases,
but not the density. To second order in Pe, the density at
the surface increases as Pe?. Indeed, the symmetry that
particles with velocities +v9 show the same accumulation,

dictates that all odd powers of vy vanish.

The surface excess predicted by eq. (16) to second order
in Pe, also displayed in fig. 3, again shows astonishingly
good agreement with the simulation results for wider chan-
nels. Because the spherical harmonics are orthogonal, the
probability density to find a particle at position z only de-
pends on the #-independent terms in eq. (15). To second

(16)
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order, we thus have an exponential decay to the bulk den-
sity as a function of distance from the surface. This fits
well our simulation results (see fig. 2). Terms of higher or-
der in Pe should be exponentials as well. Thus, for larger
Peclet number we expect a sum of exponentials, and not
a power law as indicated by the simulations.

Looking in detail at the distribution p(z,6), see fig. 6,
we find very good agreement for Pe < 2, and still the
correct trends for Pe > 2. However, for particles with
an orientation pointing away from the surface (z = 0,
cos(d) = 1), the theory still predicts an accumulation,
while the simulation show a depletion of those particles.
This deviation is most probably due to the omission of
higher-order terms.

In combination with the thin-channel approximation,
we can now also understand the form of the channel-width
dependence in fig. 4. As the channel width d increases,
the thin channel approximation applies for d/\ < 1, and
s is predicted to increase in this regime through the in-
creasing Peclet number Pe;. However, as d/\ exceeds
unity, rotational diffusion becomes important, and the
thin channel approximation fails. Instead, we can em-
ploy the small Peclet-number approximation, which pre-
dicts that the surface excess decays as (1+d/s,) !, where
sr ~ APe? is independent of d.

Summary & Conclusions. — We have shown that
simple self-advection Brownian dynamics of spherical par-
ticles is sufficient to generate strong surface adhesion. This
mechanism of accumulation at planar walls (or obstacles)
is very generic. For example, a sphere with hydrodynamic
slip at its surface has a different value of A than a no-
slip sphere, but otherwise will show exactly the same wall
accumulation behavior. In more complex systems, e.g.
for many swimmers in a hydrodynamic environment, ad-
ditional effects like hydrodynamic interactions [18,26] or
crowding [17] can help or hinder this accumulation, but
the competition of propulsion and orientational diffusion
needs to be taken into account in all descriptions. The hy-
drodynamic slowing down of rotational diffusion close to
a wall [27], will further enhance the surface accumulation.

Based on a Fokker-Planck description, we are able to un-
derstand how surface accumulation arises from the sorting
of oriented particles away or towards a wall. To first order
in Peclet number, this leads to an preferred orientation of
particles towards the wall, but does not affect the density.
Only to second order in Peclet number does this orienta-
tion lead to accumulation at the wall. For small Peclet
numbers, this increased probability density drops expo-
nentially to the bulk density on length scales y/D/(2D,).
At higher Peclet numbers, the sum of several exponential
decays is difficult to distinguish from an apparent power-
law behavior observed in the simulations.

An interesting conclusion can also be obtained by com-
paring spherical and rod-like microswimmers. In the
case of rods, the surface accumulation remains incomplete
(with surface excess s < 1) even for large swimming veloc-

ities, while s = 1 for spheres in this limit. Thus, an elon-
gated shape actually helps the microswimmer to escape
from the surface (in the absence of hydrodynamic attrac-
tion), because it suppresses orientations of the swimmer
towards the wall.
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